1.6: Absolute Value Functions

How to Solve an Absolute Value Equation

Isolate: Isolate the absolute the absolute value term to have the form $|A|=B$. If $B<0$, No solution exists.

Two Equations: If $B \geq 0$, use $|A|=B$ to write two equations $A=B$ and $A=-B$.
Solve: for x.
Extraneous Solutions: Plug in the x previously found into the original equation to eliminate the extraneous solutions.

This method works for equations of the type $|A|=|B|$ as well.
Now, you can complete Problems 1-4.

How to Solve Absolute Value Inequalities

- Isolate the absolute value term.
- Rewrite the inequality into two inequalities.

If $|A|<B$, then $-B<A<B$.
If $|A|>B$, then $A>B$ or $A<-B$.

- When solving $|a x-b|<c$,
- When solving $|a x-b|>c$.

Now, you can complete Problems 5 and 6.

Illustration of Absolute Value Equations

- Solving an equation of the form of $|a x+b|=c$ can be viewed as finding the intersection of graph of function $y=|a x+b|$ and $y=c$. So if we assume B is constant, we will have three cases:

The Absolute Value Function is Piecewise-defined

- $|x|=\left\{\begin{array}{cc}x & \text { when } x \geq 0 \\ -x & \text { when } x<0\end{array}\right.$ (Check this fact by taking a sample value in each rule.)
- $|x-a|=\left\{\begin{array}{cc}x-a & \text { when } x-a \geq 0 \\ -(x-a) & \text { when } x-a<0\end{array} \Longrightarrow|x-a|=\left\{\begin{array}{cc}x-a & x \geq a \\ -x+a & x<a\end{array}\right.\right.$

Now, you can complete Problems 7 and 8.

1. Solve $7|11 x-4|+1=22$ for x.
2. Solve $-11|7 x-4|+46=13$ for x.
3. Solve $|11 x+7|=12 x+4$ for x.
4. Solve equation $|x|=|2 x+6|$ for x.
5. One of the important applications of absolute value functions is in finding the bounds of measurement error. A factory is producing bags of snacks that are labeled as 150 gr . The producer is required to keep the actual weight within 2% of the labeled weight. Let w be the actual weight of a bag in grams. Write the range of the actual weight as an absolute value inequality.
6. Solve each of these inequalities.
(a) $|11 x-2|<6$
(b) $|11 x-2| \geq 3$
7. Consider the function $g(x)=-|3 x-11|+4$.
(a) Identify the parent function and describe the transformation on g (shifts, stretches, etc).
(b) Use this description to sketch a graph of g.
8. Consider $f(x)=|x-4|+5$.
(A) For what values of x is $y=x-4$ positive? For what values of x is $y=x-4$ negative?
(B) Rewrite f as a piecewise-defined function. Explain what information you used from Part (A).
(C) Graph $y=f(x)$.

